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Abstract

An analytic technique, namely the homotopy analysis method (HAM), is applied to study the steady mixed convection in two-dimen-
sional stagnation flows of a viscoelastic fluid around heated surfaces for the case when the temperature of the wall varies linearly with the
distance from the stagnation point. The two-dimensional boundary layer equations governing the flow and thermal fields are reduced by
appropriate transformations to a set of two ordinary differential equations. These equations are solved analytically using the HAM in the
buoyancy assisting and opposing regions. It is found that, as for the Newtonian flow case, a reverse flow region develops in the buoyancy
opposing flow region, and dual solutions are found to exist in that flow regime for a certain ranges of the buoyancy and viscoelastic
parameters.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The theory of non-Newtonian fluids has become a field
of very active research for the last few decades as this class
of fluids represents, mathematically, many industrially
important fluids such as plastic films and artificial fibers
in industry. Several authors have considered the viscoelas-
tic fluids whose constitutive equations are based on the
assumption of gradually fading memory (i.e. short relaxa-
tion times), see [1]. A good list of references on the pub-
lished papers for these fluids can be found in [2–4]. The
steady incompressible flow of a viscoelastic fluid in the
region of a two-dimensional stagnation point flow has been
studied by Beard and Walters [5] and Garg and Rajagopal
[6]. The equations of motion of viscoelastic fluids are one
order higher than the Navier–Stokes or boundary layer
equations. Hence the boundary conditions are not suffi-
cient to determine the solution completely. In order to
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overcome this difficulty, Beard and Walters [5] used a reg-
ular perturbation technique where the perturbation param-
eter occurs as a coefficient of highest derivative. This
reduces the order of the equation. However, it solves a sin-
gular perturbation problem as a regular perturbation prob-
lem. Garg and Rajagopal [6] overcome this difficulty by
augumenting the boundary conditions at infinity and used
quasilinearization technique along with orthonormaliza-
tion. This method has been used also by Seshadri et al.
[7] to study the unsteady three-dimensional stagnation
point flow of a viscoelastic fluid.

The aim of this paper is to investigate the steady mixed
convection in stagnation flows of a viscoelastic fluid adja-
cent to a vertical surface. The paper is, in fact, the exten-
sion of the work by Ramachandran et al. [8] for
Newtonian fluids and of Lok et al. [9] to viscoelastic fluids.
Mixed convection in stagnation flows becomes important
when the buoyancy forces, due to the temperature differ-
ence between the wall and the free stream, become high
and thereby modify the flow and the thermal fields signifi-
cantly. In such flows, the flow and thermal fields are no
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longer symmetric with respect to the stagnation line. More-
over, the local heat transfer rate and the local shear stress
can be significantly enhanced or diminished in comparison
to the pure forced convection case. Using similarity vari-
ables, the governing boundary layer equations are trans-
formed into a system of two non-linear ordinary
differential equations which are then solved analytically
using the homotopy analysis method (HAM) [10–30] for
both assisting and opposing flows cases. Representative
results for the shear stress on the wall and velocity profiles
are obtained for several values of the governing parame-
ters, which are presented in tables and figures. To the best
of our knowledge this problem has not been studied before
and the results reported here are new.
2. Basic equations

Consider a two-dimensional stagnation flow normal to a
heated vertical surface, which is placed in a viscoelastic
fluid of uniform ambient temperature T1, as is shown in
Fig. 1. It is assumed that the undisturbed free stream of
velocity is U1 at large distances from the plate. In addi-
tion, we assume that the surface of the plate is heated to
a variable temperature Tw(x), where Tw(x) > T1. The flow
in the neighborhood of the stagnation line has the same
characteristic irrespective of the shape of body. This flow
is often referred to as the Hiemenz [31] flow. In the absence
of heat generation and viscous dissipation, under the Bous-
sinesq approximation and for steady state flow conditions,
the boundary layer equations are given by, see [32]
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Fig. 1. Physical model and coordinate system.
subject to the boundary conditions

u ¼ 0; v ¼ 0; T ¼ T wðxÞ at y ¼ 0;

u! U1ðxÞ;
ou
oy
! 0; T ! T1 as y !1; ð4Þ

where x and y are the Cartesian coordinates along and nor-
mal to the plate, respectively, u and v are the velocity com-
ponents along x- and y-axes, respectively, m is the kinematic
viscosity, T is the temperature, g is the acceleration due to
gravity, b is the thermal expansion coefficient, a is the ther-
mal diffusivity and k0 is the viscoelastic parameter. Further,
the +sign in Eq. (2) corresponds to the assisting flow while
the �sign corresponds to the opposing flow, respectively.
Here U1(x) = ax, where a is a positive constant and we as-
sume that Tw(x) varies linearly with the coordinate x,
namely, Tw(x) = T1 + bx where b is a positive constant
which means that the plate is heated.

We look for a solution of Eqs. (1)–(3) of the form

g ¼
ffiffiffi
a
m

r
y; u ¼ axf 0ðgÞ; v ¼ �

ffiffiffiffiffi
am
p

f ðgÞ;

hðgÞ ¼ T � T1=T w � T1; ð5Þ

where primes denote differentiation with respect to g.
Substituting Equation. (5), the continuity equation (1) is
satisfied automatically and from Eqs. (2) and (3) we get
the following ordinary differential equations

f 000 þ ff 00 � f 02 þ 1� kh� K f 002 � 2ff 000 þ ff
0000

� �
¼ 0; ð6Þ

h00 þ Pr f h0 � f 0hð Þ ¼ 0; ð7Þ

and the boundary conditions (4) become

f ð0Þ ¼ f 0ð0Þ ¼ 0; hð0Þ ¼ 1;

f 0ð1Þ ¼ 1; f 00ð1Þ ¼ 0; hð1Þ ¼ 0: ð8Þ

Here k(P0) is the constant mixed convection parameter, K

(P0) is the dimensionless viscoelastic parameter and Pr is
the Prandtl number, which are defined as

k ¼ gbb
a2
¼ gb T w � T1ð Þx2=m3

U 2
1x2=m2

¼ Grx

Re2
x

; K ¼ k0a
q
; ð9Þ

with Grx = gb(Tw � T1)x2/m3 being the local Grashof
number, Rex = U1x/m is the local Reynolds number and
q is the density of the fluid.

Physical quantities of interest are the skin friction coef-
ficient Cf and the local Nusselt number Nux, which are
defined as

Cf ¼
sw

qU 2
1
; Nux ¼

xqw

aðT w � T1Þ
; ð10Þ

where sw and qw are the wall skin friction and the heat
transfer from the plate, which are given by
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Using variables (5), we get

Re1=2
x Cf ¼ f 00 þ K 3f 0f 00 � ff 000ð Þ½ �g¼0 ¼ f 00ð0Þ;

Re�1=2
x Nux ¼ �h0ð0Þ: ð12Þ

The analytical solution of the coupled non-linear system
consisting of Eqs. (6)–(8) is a obtained using the HAM.

3. Solution by homotopy analysis method (HAM)

For the analytical solution of Eqs. (6)–(8) using HAM,
we choose initial approximations of f(g) and h(g) and the
auxiliary linear operators L1 and L2 as

f0ðgÞ ¼ g� 1þ expð�gÞ; ð13Þ
h0ðgÞ ¼ expð�gÞ; ð14Þ

L1ðf Þ ¼
d3f
dg3
� df

dg
; ð15Þ

L2ðf Þ ¼
d2f
dg2
� f ð16Þ

which have the following properties

L1½C1 þ C2eg þ C3e�g� ¼ 0; ð17Þ
L2½C4eg þ C5e�g� ¼ 0 ð18Þ

in which Ci, i = 1–5 are arbitrary constants. If p(2[0,1]) and
�h1; �h2 indicate the embedding and non-zero auxiliary
parameters, respectively then the zeroth-order deformation
problems are of the following form

ð1� pÞL1 f̂ ðg; pÞ � f0ðgÞ
h i

¼ p�h2H 1ðgÞN1½f̂ ðg; pÞ�; ð19Þ

f̂ ð0; pÞ ¼ 0; f̂ 0ð0; pÞ ¼ 0; f̂ 0ð1; pÞ ¼ 1; ð20Þ
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in which the non-linear operators N1 and N2 are defined
by
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and H1(g) and H2(g) are the base functions. For the present
flow problem we take

H 1ðgÞ ¼ expð�gÞ; H 2ðgÞ ¼ 1:

Obviously for p = 0 and p = 1 we have

f̂ ðg; 0Þ ¼ f0ðgÞ; f̂ ðg; 1Þ ¼ f ðgÞ; ð25Þbhðg; 0Þ ¼ h0ðgÞ; bhðg; 1Þ ¼ hðgÞ: ð26Þ

As p increases from 0 to 1, f̂ ðg; pÞ and ĥðg; pÞ vary from
f0(g) and h0(g) to the exact solutions f(g) and h(g). Due
to Taylors theorem and Eqs. (25) and (26), we can write

f̂ ðg; pÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞpm; ð27Þ

bhðg; pÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞpm; ð28Þ

fmðgÞ ¼
1

m!

omf̂ ðg; pÞ
opm

jp¼0; hmðgÞ ¼
1

m!

ombhðg; pÞ
opm

jp¼0; ð29Þ

where the convergence of the series in Eqs. (27) and (28) is
dependent upon �h1 and �h2. Assume that �h1 and �h1 are se-
lected such that the series in Eqs. (27) and (28) are conver-
gent at p = 1, then due to Eqs. (25) and (26) one can write

f ðgÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞ; ð30Þ

hðgÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞ: ð31Þ

Differentiating the zeroth-order deformation equations (19)
and (21) m times with respect to p, dividing by m!, and fi-
nally setting p = 0 we get the following mth-order deforma-
tion problems

L1½fmðgÞ � vmfm�1ðgÞ� ¼ �h1R
f
mðgÞ; ð32Þ

fmð0Þ ¼ f 0mð0Þ ¼ f 0mð1Þ ¼ 0; ð33Þ
L2 hmðgÞ ¼ vmhm�1ðgÞ½ � ¼ �h2R

h
mðgÞ; ð34Þ

hmð0Þ ¼ hmð1Þ ¼ 0; ð35Þ
Rf
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Rh
mðgÞ ¼ h00m�1ðgÞ þ Pr

Xm�1

k¼0
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� �

; ð37Þ

where

vm ¼
0; m 6 1

1; m > 1

				 : ð38Þ

The series solutions of Eqs. (32)–(35) up to first few
order of approximations have been obtained using MATH-
EMATICA which are



T. Hayat et al. / International Journal of Heat and Mass Transfer 51 (2008) 3200–3206 3203
f ðgÞ ¼
X1
m¼0

fmðgÞ

¼ lim
M!1

XM

m¼0

a0
m;0 þ

X2Mþ1

n¼1

e�ng
X2M

m¼n�1

X2mþ1�n

k¼0

ak
m;ng

k

 !" #
;

ð39Þ

hðgÞ ¼
X1
m¼0

hmðgÞ ¼ lim
M!1

XMþ1

n¼1

e�ng
X2M

m¼n�1

X2mþ1�n

k¼0

bk
m;ng

k

 !" #
:

ð40Þ
The recurrence formulas for the coefficients ak
m;n and bk

m;n

of fm(g) and hm(g) are obtained when m P 1,0 6
n 6 2m + 1 and 0 6 k 6 2m + 1 � n as

a0
m;0 ¼ vmv2mþ1a0

m�1;0 �
X2m

q¼0

Dq
m;1l

q
1;1 �

X2mþ1

n¼2

X2mþ1�n

q¼1

Dq
m;n

¼ lq
n;1 � ðn� 1Þlq

n;0

n o
;

ak
m;0 ¼ vmv2mþ1�kak

m�1;0; 0 6 k 6 2mþ 1;
a0
m;1 ¼ vmv2ma0

m�1;1 þ
X2m

q¼0

Dq
m;1l

q
1;1

�
X2mþ1

n¼2

nD0
m;nl

0
n;0 þ

X2mþ1�n

q¼1

Dq
m;n nlq

n;0 � lq
n;1

� �" #
;

ak
m;1 ¼ vmv2m�kak

m�1;1 �
X2m

q¼k�1

Dq
m;1l

q
1;k; 1 6 k 6 2mþ 1;
ak
m;n ¼ vmv2mþ1�n�kak

m�1;n �
X2mþ1�n

q¼k

Dq
m;nl

q
n;k;

2 6 n 6 mþ 1; 0 6 k 6 2mþ 1� n;
bk
m;0 ¼ vmv2mþ1�kbk

m�1;0 þ
X2mþ1

q¼0

Cq
m;0l1q

1;0;
b0
m;1 ¼ vmv2mb0

m�1;1 �
X2mþ1

q¼0

Cq
m;0l1q

0;0 �
Xmþ1

n¼2

X2mþ1�n

q¼0

Cq
m;nl1q

n;0;
bk
m;1 ¼ vmv2m�kbk

m�1;1 þ
X2m

q¼k�1

Cq
m;1l1q

1;k; 1 6 k 6 2mþ 1;
bk
m;n ¼ vmv2mþ1�n�kbk

m�1;n þ
X2mþ1�n

q¼k

Cq
m;nl1q

n;k;

2 6 n 6 mþ 1; 0 6 k 6 2mþ 1� n;
lq
1;k ¼

Xqþ1�k

p¼0

q!

k!2qþ1�k�p ; q P 0; 16 k6 qþ1; ð41Þ

lq
n;k ¼

Xq�k

r¼0

Xq�k�r

p¼0

�q!

k!ðn�1Þqþ1�k�r�pnrþ1ðnþ1Þpþ1
;

q P 0; 16 k6 q; n P 2; ð42Þ

l1q
1;k ¼
ð�1Þ2qþ1�2k�pq!

2qþ2�kk!
; q P 0; 06 k6 qþ1; ð43Þ

l1q
n;k ¼

Xqþ1�k

p¼0

q!

k!ðnþ1Þpþ1ðn�1Þqþ1�k�p ;

q P 0; 16 k6 q; n P 2; ð44Þ

Dq
m;n¼ �h1

v2m�n�qþ1eq
m�1;n�kbq

m�1;1þv2m�n�qþ2 aq
m;n�bq

m;n

� �
�Kv2m�n�qþ2 cq

m;n�dq
m;nþxq

m;n

� �
24 35;

ð45Þ
Cq

m;n¼ �h2 v2m�n�qþ1gq
m�1;nþPrv2m�n�qþ2 Hq

m;n�Pq
m;n

� �h i
;

ð46Þ

aq
m;n ¼

Xm�1

k¼0

Xminfn;2kþ1g

j¼maxf0;n�2mþ2kg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
di

k;ja
q�i
m�1�k;n�j;

bq
m;n ¼

Xm�1

k¼0

Xminfn;2kþ1g

j¼maxf0;n�2mþ2kg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
ci

k;jc
q�i
m�1�k;n�j;

cq
m;n ¼

Xm�1

k¼0

Xminfn;2kþ1g

j¼maxf0;n�2mþ2kg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
di

k;jd
q�i
m�1�k;n�j;

dq
m;n ¼

Xm�1

k¼0

Xminfn;2kþ1g

j¼maxf0;n�2mþ2kg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
ci

k;ja
q�i
m�1�k;n�j;

xq
m;n ¼

Xm�1

k¼0

Xminfn;2kþ1g

j¼maxf0;n�2mþ2kg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
f i

k;ja
q�i
m�1�k;n�j;

Hq
m;n ¼

Xm�1

k¼0

Xminfn;2kþ1g

j¼maxf0;n�2mþ2kg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
ai

k;jg
q�i
m�1�k;n�j;

Pq
m;n ¼

Xm�1

k¼0

Xminfn;kþ1g

j¼maxf0;n�mþkg

Xminfq;2kþ1�jg

i¼maxf0;q�2mþ2kþ1þn�jg
ci

k;jb
q�i
m�1�k;n�j;

ck
m;n ¼ ðk þ 1Þakþ1

m;n � nak
m;n; dk

m;n ¼ ðk þ 1Þckþ1
m;n � nck

m;n;

ek
m;n ¼ ðk þ 1Þdkþ1

m;n � ndk
m;n; f k

m;n ¼ ðk þ 1Þekþ1
m;n � nek

m;n;

gk
m;n ¼ ðk þ 1Þbkþ1

m;n � nbk
m;n; hk

m;n ¼ ðk þ 1Þgkþ1
m;n � ngk

m;n;

a0
0;0 ¼ �1; a1

0;0 ¼ 1; a0
0;1 ¼ 1; b0

0;0 ¼ b1
0;0 ¼ 0; b0

0;1 ¼ 1:

ð47Þ
4. Convergence of the HAM solution

The convergence and rate of approximation for the
HAM solution of the series (39) and (40) are strongly
dependent upon the auxiliary parameters �h1 and �h2. There-
fore, one can choose the proper values of �h1 and �h2 by plot-
ting the �h-curves which ensure that the solution series (39)



Fig. 2. �h-curves for 15th-order approximations.

Table 1
Convergence of HAM solutions for different order of approximation

Order of approximations For assisting flow For opposing flow

f00(0) �h0(0) f00(0) �h0(0)

1 1.3733 0.2400 0.8500 0.2875
5 1.4133 0.3600 0.8338 0.3285
10 1.4188 0.3358 0.8197 0.3019
14 1.4190 0.3354 0.8182 0.3006
20 1.4190 0.3354 0.8176 0.3002
22 1.4190 0.3354 0.8174 0.3001
25 1.4190 0.3354 0.8174 0.3001
30 1.4190 0.3354 0.8174 0.3001
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and (40) converge, as suggested by Liao [10]. For this pur-
pose the �h-curves are plotted for 15th-order of approxima-
tions in Fig. 2 for both cases of assisting and opposing
flows. Fig. 2 clearly depicts that the range for the admissi-
ble values of �h1 and �h2 are �1.9 6 �h1 6 �0.3 and
�1.8 6 �h2 6 �0.3. Obviously our calculations show that
the series (39) and (40) converge in the whole region of g
Fig. 3. Effects of viscoelastic paramet
when �h1,2 = �h = �1. Table 1 is made to show the conver-
gence of the HAM solutions for different order of
approximations.

5. Results and discussion

In order to access the influence of some physical param-
eters on the velocity and temperature profiles, the Figs. 2–4
are plotted. The variations of viscoelastic parameter K and
the Prandtl number Pr on the velocity f0 and temperature h
are shown in both the cases of assisting and opposing
flows, respectively.

Fig. 3 shows the velocity f0 for various values of visco-
elastic parameter K in assisting and opposing flows. This
Figure indicates that f0 is a decreasing function of K. But
the decrease in f0 is slightly larger in case of assisting flow
when compared with opposing flow. The boundary layer
thickness is increased as K increases in both assisting and
opposing flows. Fig. 4 depicts the variation of K on the
temperature field h. It can be seen that the temperature h
increases with an increase in K. Therefore one can see that
er K on the velocity f0 at �h = �1.



Fig. 4. Effects of viscoelastic parameter K on the temperature h at �h = �1.

Fig. 5. Effects of Prandtl number Pr on the temperature h at �h = �1.

Table 2
Values of skin friction f0(0) and local Nusselt number Nux for different
parameters.

k K Pr Assisting flow Opposing flow

f00(0) h0(0) f00(0) �h0(0)

0.2 0.0 0.2 1.3543 0.4420 1.1072 0.4235
0.2 1.1559 0.4261 0.9558 0.4094
0.5 0.9821 0.4097 0.8184 0.3939
0.7 0.9044 0.4018 0.7555 0.3875
1.0 0.8174 0.3920 0.6844 0.3785
1.5 0.7171 0.3793 0.6015 0.3667
2.0 0.6474 0.3698 0.5435 0.3578
0.2 0.0 1.1933 0.0322 0.9144 0.0322

0.2 1.1559 0.4261 0.9558 0.4094
0.5 1.1439 0.6082 0.9689 0.5874
0.7 1.1394 0.6903 0.9734 0.6678
1.0 1.1353 0.7876 0.9783 0.7669
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influence of K on f0 and h is opposite. Also, the increase in
Fig. 4 is larger when assisting flow is taken into account.
Further, the thermal boundary layer thickness increases
by increasing K. The influence of the Prandtl number Pr

on h is shown in Fig. 5. It is observed that h decreases when
Pr increases in the both cases. The thermal boundary layer
thickness is decreased for large values of Pr.

Table 2 is made just to show the numerical values of skin
friction coefficient and surface heat transfer for various val-
ues of viscoelastic parameter K and Prandtl number Pr in
both cases of assisting and opposing flows, respectively.
It is observed that the skin friction coefficient and local
heat transfer (Nusselt number) are decreased with an
increase in K in both ill assisting and opposing flows. But
this increase in both f00(0) and h0(0) is larger in case of
assisting flow. It is also noted that the skin friction
decreases and local heat transfer increases when Pr

increases in the case of assisting flow. But in case of oppos-
ing flow, the skin friction coefficient and local heat transfer
increase by increasing Pr. The change in values of the skin
friction coefficient and local heat transfer is larger when Pr

increases in assisting flow.
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6. Final remarks

The main goal of this article is provide an analytic solu-
tion to a non-linear problem. In this work, HAM analysis
has been performed for convection flow in a second-grade
fluid. The simple and convenient expressions for velocity
and temperature have been developed. The validity of the
solutions for velocity and temperature has been explicitly
discussed. The obtained series solutions confirm the power
and ability of the HAM as an easy tool for computing the
solution of a non-linear problem. It is noted that the nega-
tive values of the temperature gradient provide an indica-
tion of the physical fact that the heat flows from the
surface to the ambient fluid. The significance of the various
other parameters on the flow and temperature is high-
lighted. The analytic technique employed in this paper
can be used to other nonlinear problems in the similar way.
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